S = 2.18	Extinction correction: none
4162 reflections	Atomic scattering factors
658 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/\sigma^2(F_o)$	

Table 3. Hydrogen bonds (Å, °)

Type*	DH	Α	$D \cdot \cdot \cdot A$	N···O =C′
Intramolecular				
C7	N5	O3	3.045 (8)	86(1)
C10	N7	04	3.102 (7)	126(1)
C10	N8	O5	3.042 (7)	114(1)
C13	N4	09	2.998 (6)	147 (1)
C 17	N9	04	3.086 (6)	133 (1)
Intermolecular	N6	O8 ⁱ	3.07 (1)	120(1)
Peptide solvent	N3	N1s ⁱⁱ	2.96 (4)	
•	N1s	09 ⁱⁱ	2.91 (3)	140 (2)
	01w	O6	2.96(1)	115(1)
	01w	O2 ⁱⁱⁱ	2.78 (5)	136 (3)
	02w	O5 ⁱⁱⁱ	3.78 (4)	111 (1)

Symmetry codes: (i) x, y, 1 - z; (ii) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$; (iii) -x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

* Benedetti (1982).

Direct application of the phase determination procedures failed to give sensible interpretations of the E map. The phase problem of CLAIB was overcome by applying the molecular replacement technique using a molecular fragment of known structure. In fact, the coordinates of the Pro-Pro-Phe-Phe fragment, as determined previously in the structure of CLAIB grown from methanol/water, were used as a starting model for the vector search procedure on the set of diffraction data collected with the Patterson search program PATSEE (Egert, 1983). The initial model, containing 34 atoms, was correctly orientated and positioned with respect to the origin of the new unit cell. Then the best solution of this procedure was used in the SIR92 (Altomare, Cascarano, Giacovazzo, Guagliardi, Polidori, Burla & Camalli, 1994) program with the PARTIAL procedure. The direct phase-expansion procedure led to a molecular fragment containing all non-H atoms. Subsequent difference Fourier analysis revealed the two water and acetonitrile molecules. The H atoms were introduced in their stereochemically expected positions with an isotropic temperature factor equal to the B_{eq} of the heavy atom to which they are bonded. Their parameters were kept fixed. The structure was refined using SHELX76 (Sheldrick, 1976) on a MicroVAX 3100 computer.

This work was supported by CNR grant No. 89.05354.M277.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1092). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Polidori, G., Burla, M. C. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

- Benedetti, E. (1982). Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6, edited by B. Weinstein, pp. 105-184. New York: Marcel Dekker.
- Benedetti, E., Morelli, G., Nemethy, G. & Scheraga, H. A. (1983). Int. J. Peptide Protein Res. 22, 1-15.
- Di Blasio, B., Rossi, F., Benedetti, E., Pavone, V., Pedone, C., Temussi, P. A., Zanotti, G. & Tancredi, T. (1989). J. Am. Chem. Soc. 111, 9089-9098.
- Di Blasio, B., Rossi, F., Benedetti, E., Pavone, V., Saviano, M., Pedone, C., Zanotti, G. & Tancredi, T. (1992). J. Am. Chem. Soc. 114, 8277-8283.
- Egert, E. (1983). Acta Cryst. A39, 936.
- Karle, I. L. & Duesler, E. (1977). Proc. Natl Acad. Sci. USA, 74, 2602-2606.
- Kaufmann, H. P. & Tobshirbel, A. (1959). Chem. Ber. 92, 2805-2809.
- Kessler, H., Klein, M., Müller, A., Wagner, K., Bats, J. W., Ziegler, K. & Frimmer, M. (1986). Angew. Chem. Int. Ed. Engl. 27, 997-999.
- Rossi, F., Saviano, M., Di Blasio, B., Zanotti, G., Maione, A., Tancredi, T. & Pedone, C. (1994). Biopolymers, 34, 273-284.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Zanotti, G., Maione, A., Rossi, F., Saviano, M., Pedone, C. & Tancredi, T. (1993). Biopolymers, 33, 1083-1091.
- Zanotti, G., Tancredi, T., Rossi, F., Benedetti, E., Pedone, C. & Temussi, P. A. (1989). Biopolymers, 28, 371-383.

Acta Cryst. (1995). C51, 666-670

Two Steroidal Epimers, $(5\beta, 17\alpha)$ -Pregna-20-yno[3,4-c][1,2,5]oxadiazol-17-ol (the 5β -Epimer) and $(5\alpha, 17\alpha)$ -Pregna-20-yno[3,4c][1,2,5]oxadiazol-17-ol (the 5 α -Epimer)

DAVID R. LISGARTEN AND REX A. PALMER

Department of Crystallography, Birkbeck College, University of London. Malet Street. London WCIE 7HX, England

DOMINIQUE MAES, JOHN LISGARTEN AND LODE WYNS

Department of Ultrastructure, Instituut voor Molekulaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius Rode, Belgium

(Received 8 November 1993; accepted 23 June 1994)

Abstract

The crystal and molecular structures of the steroidal oxadiazoles $(5\beta, 17\alpha)$ -pregna-20-yno[3, 4-c][1, 2, 5]oxadiazol-17-ol (the 5 β -epimer) and (5 α ,17 α)-pregna-20-yno[3,4-c][1,2,5]oxadiazol-17-ol (the 5 α -epimer), C₂₁H₂₈N₂O₂, have been determined. In both structures rings A are similar, having conformations intermediate between a strained sofa, a half-chair and an envelope. Rings B and C are also similar, adopting chair conformations. In the 5 β -epimer, ring *D* has a 13 β -envelope conformation, while in the 5 α -epimer, ring *D* has an envelope/intermediate half-chair conformation.

Comment

The two title compounds were prepared during work on the synthesis of 3,4-condensed oxadiazole derivatives of pregnanes, in order to test their anti-fertility properties and binding affinity to progesterone receptors (Singh, Yadav & Jindal, 1987; Yadav, Jindal & Singh, 1988). The structures of the title compounds have been determined in order to distinguish between the 5α and 5β configurations and to study the influence of the 3,4-condensed oxadiazole system on the steroid skeleton with a *cis* or *trans* junction between rings A and B. This work continues the investigation into a series of steroidal oxadiazoles which is currently being undertaken by the authors.

The average C—C single-bond length within the steroid nucleus, excluding C3—C4 for both the 5β -and 5α -epimers, has a normal value. The C3—C4 bond length, as with other steroids in the series (El Shora, Palmer, Singh & Paul, 1984), is shortened as a result of π delocalization in the oxadiazole ring, similar to that observed in other heterocyclic oxadiazoles (Sagebarth & Cox, 1965; Calleri, Chiari, Chiesi Villa, Gaetani, Guastini & Viterbo, 1975; Viterbo & Serafino, 1978; El Shora *et al.*, 1984).

Excluding bond angles C2-C3-C4 and C3-C4-C5, the average bond angle within the

Fig. 1. Structural formula and numbering scheme for both molecules. The numbers refer to C atoms unless otherwise indicated.

steroid skeleton is 110.2 (1) and 110.0 (1)° for the 5β - and 5α -epimer, respectively. The bond angles C2-C3-C4 and C3-C4-C5 for both epimers are somewhat larger than the average and the differences are associated with fusion of the oxadiazole rings. As with similar molecules (El Shora *et al.*, 1984; Maes, Wyns, Lisgarten, Lisgarten & Palmer, 1992), there is a variation in C-C-C-C bond angles in the steroid nucleus depending on their environments; bond angles around quaternary, tertiary and secondary C atoms have the average values 109.4 (1), 111.4 (1) and 109.0 (1)°, respectively, for the 5β -epimer, and 109.4 (1), 111.8 (1) and 109.1 (1)°, respectively, for the 5α -epimer.

Conformational features of the molecules are described in terms of torsion angles (Table 2) and asymmetry parameters (Table 3). The magnitudes of the asymmetry parameters ΔC_s and ΔC_2 (Duax & Norton, 1975) have been calculated to indicate the deviation (about bond directions and bond bisectors) from ideal mirror ($\Delta C_s = 0$) and ideal twofold (ΔC_2) = 0) symmetry. In ring A the values of $\Delta C_2(3.4)$ and $\Delta C_{\rm s}(3)$ show that the conformation of ring A for both molecules is intermediate between 10-sofa and 1.10-half-chair/envelope, similar to that found in other steroidal oxadiazoles (El Shora et al., 1984). For both molecules, rings B and C have low ΔC_2 and ΔC_s values and are described as having chair conformations. The five-membered D ring in the 5 β -epimer has a 13 β -envelope conformation, while in the 5 α epimer the D ring conformation is intermediate between 13β -envelope and 13β , 14α -half-chair.

The ring-junction connections together with their absolute endocyclic torsion angles for each molecule are: A/B cis, $T1 = 50.8 + 54.6 = 105.4^{\circ}$, B/C trans, $T2 = 56.0 + 53.8 = 109.8^{\circ}$ and C/D quasi trans, T3 = $60.7 + 45.5 = 106.3^{\circ}$ for the 5 β -epimer, and A/Btrans, $T1 = 53.9 + 58.5 = 112.4^{\circ}$, B/C trans, T2 = $51.7 + 57.2 = 108.9^{\circ}$ and C/D quasi trans, T3 = 58.7 + 48.0 = 106.7° for the 5 α -epimer. The junction between the oxadiazole ring and ring A is quasi cis fused in both molecules. The dihedral angles made by the planes A and B, and A and ABCD are 77.8 and 70.7°, respectively, for the 5 β -epimer, showing the typical configuration for a $5\beta(A/B \ cis)$ steroid. The corresponding dihedral angles $(2.7 \text{ and } 1.5^{\circ})$ for the 5 α -epimer indicate an almost planar molecular profile (Fig. 2).

The substituents at C17 are pseudo-equatorial (OH) and pseudo-axial (alkyne) in both molecules. The pseudo-torsion angle C19---C10---C13---C18, which measures the twist along the molecule, has values of 1.1 and 4.4° for the 5 β - and 5 α -epimer, respectively. Hydrogen bonding in the 5 β -epimer is indicated by interactions involving the hydroxyl O atoms, O1---O1'(-x + y, 1 - x, z + $\frac{1}{3}$): O1---O1' = 2.993 (2), O1---H1 = 0.801 (6), H1---O1' =

Fig. 2. Stereoview of the molecular conformations for (a) the 5β -epimer and (b) the 5α -epimer.

Fig. 3. Crystal packing for the 5β -epimer viewed along the c axis.

Fig. 4. Stereoview of the crystal packing of the 5α -epimer.

2.195 (6) Å, O1—H1···O1' = 173.3 (1)°. In the 5α -epimer, hydrogen bonding is indicated by the (x, y, 1-z)O1···N1' interaction: O1···N1' = 3.040 (2), O1—H1 = 0.95 (3), N1'···H1 = 2.107 (4) Å, O1—H1···N1' = 165.8 (1)°. The hydrogen-bonding patterns are similar to those observed in a related epimeric pair of steroidal oxadiazoles (El Shora *et al.*, 1984). Packing coefficients were calculated for both molecules using the *OPEC* program (Gavezotti, 1982, 1983) and are 0.73 and 0.74 for the 5β -epimer and the 5α -epimer, respectively. These values are somewhat larger than the average for organic compounds containing N and O atoms.

Experimental 5β-Epimer

Crystal data $C_{21}H_{28}N_2O_2$ $M_r = 340.46$ Trigonal P_{3_2} a = 15.034 (2) Å c = 7.187 (2) Å V = 1406.8 (5) Å³ Z = 3 $D_x = 1.206$ Mg m⁻³

Data collection Enraf-Nonius CAD-4

 $\omega - \theta$ scans

none

diffractometer

 $[I > 3\sigma(I)]$

Refinement on F

3503 reflections 250 parameters

 $(\Delta/\sigma)_{\rm max} = 0.682$

5a-Epimer Crystal data

C21H28N2O2

 $M_r = 340.46$

Orthorhombic $P2_12_12_1$

a = 11.949 (1) Å

b = 13.284 (1) Å c = 11.504 (1) Å

Refinement

R = 0.048wR = 0.052

Absorption correction:

7378 measured reflections

3503 independent reflections 3454 observed reflections

 $w = 1/[\sigma^2(F) + 0.016534F^2]$

 $\theta = 0-25^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 296 KNeedle/prism $0.32 \times 0.11 \times 0.10 \text{ mm}$ Clear, colourless

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å

reflections

Cell parameters from 25

 $R_{int} = 0.021$ $\theta_{max} = 70^{\circ}$ $h = -18 \rightarrow 9$ $k = 0 \rightarrow 18$ $l = -8 \rightarrow 6$ 3 standard reflections monitored every 100 reflections intensity decay: <5%

 $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.05 \text{ e} \text{ Å}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) and SHELX76 (Sheldrick, 1976)

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 0-25^{\circ}$ $\mu = 0.59$ mm⁻¹ T = 296 K

LISGARTEN, PALMER, MAES, LISGARTEN AND WYNS

V = 1826. Z = 4 $D_x = 1.23$ Data colle	0 (2) Å ³ 8 Mg m ⁻³ ection		Prism $0.22 \times 0.20 \times 0$ Yellow	0.18 mm	C9 C10 C11 C12 C13 C14	0.3693 (1) 0.3390 (1) 0.3115 (1) 0.3521 (1) 0.3380 (1) 0.3959 (1)	0.2746 (1) 0.3251 (1) 0.3220 (1) 0.2768 (1) 0.1625 (1) 0.1182 (1)	0.0496 (1) -0.0673 (1) 0.1555 (1) 0.2707 (1) 0.2715 (1) 0.1640 (1)	0.0365 (2) 0.0366 (2) 0.0461 (3) 0.0469 (3) 0.0447 (2) 0.0431 (2)
Enraf-Nor	nius CAD-4		$R_{\rm int} = 0.042$		C15	0.3947(2)	0.0040(1)	0.1860(2) 0.3100(2)	0.0604 (3)
diffracto	ometer		$\theta_{\rm max} = 70^{\circ}$		C10 C17	0.4021(1)	0.1046 (1)	0.3697(1)	0.0489 (3)
$\omega - \theta$ scans			$h = -14 \rightarrow 14$		C18	0.2140 (2)	0.1344 (2)	0.2787 (2)	0.0635 (4)
Absorption	n correction.		$k = 0 \rightarrow 16$		C19	0.2123 (1)	0.3218 (1)	-0.0903 (1)	0.0460 (3)
none	in contection.		$l = 0 \rightarrow 11$		C20	0.5140(1)	0.1462 (1)	0.3881(1)	0.0518(3)
7632 mea	sured reflection	ons	3 standard reflec	tions	N1	0.3970 (2)	0.1830(2) 0.2892(1)	-0.3803(1)	0.0592 (3)
3430 inde	pendent refle	ctions	monitored eve	rv 100	N2	0.3635 (2)	0.4580(1)	-0.3909 (1)	0.0641 (3)
3257 obse	rved reflection	ns	reflections	., 100	01	0.3451 (1)	0.1013(1)	0.4788 (1)	0.0659 (3)
[I > 3a]	r(D)	/115	intensity deca	v. < 5%	02	0.3813 (1)	0.3708 (1)	-0.4545 (1)	0.0676 (3)
[1 > 50	(1)]		mensity deed	y. <5%					
Refinemen	nt –								
Refinemen	nt on F		$\Delta \rho_{\rm max} = 0.33 \ {\rm e}$	Å-3	Table 2. Bond lengths (Å), bond angles and torsion angles				
R = 0.042			$\Delta \rho_{\rm min} = -0.31$	$e Å^{-3}$		(°) for	the 5β - and 4	$\overline{\alpha}$ -enimers	0
wR = 0.05	50		Extinction correct	ction: none		()]0	58	a opiniois	50
3257 refle	ections		Atomic scatterin	g factors	C1C2		1.521 (2)	1.	541 (2)
260 paran	neters		from Internati	onal Tables	C1C10		1.559 (3)	1.	548 (2)
$w = 1/[\sigma^2]$	(F) + 0.0055	$96F^{2}$]	for X-ray Cry.	stallography	C2C3		1.490 (3)	1.	488 (2)
$(\Delta/\sigma)_{\rm max}$	= 0.579		(1974, Vol. IV) and	C3C4		1.420 (3)	l. 1	424 (2) 493 (2)
•			SHELX76 (Sh	eldrick,	C4-C3 C5-C6		1.525 (3)	1.	526 (2)
			1976)		C5-C10		1.555 (2)	1.	547 (2)
					C6—C7		1.531 (2)	1.	523 (2)
					C7C8		1.529 (2)	1.	530 (2) 552 (2)
					C8-C14		1.543 (2)	1.	530 (2)
Table 1.	Fractional	atomic (coordinates and	l equivalent	C9-C10		1.554 (2)	1.	545 (2)
	isotropic dis	placeme	nt parameters (Ų)	C9-C11		1.535 (2)	1.	535 (2)
			· · · ·		C10-C19		1.526 (2)	1.	538 (2)
	$U_{eq} =$	$(1/3)\Sigma_i\Sigma_i$	$L_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.		C12-C13		1.529 (2)	1.	535 (2) 527 (2)
	x	у	Z	U_{eq}	C13-C14		1.537 (2)	1.	535 (2)
5β -Epimer		-			C13C17		1.561 (2)	1.	566 (2)
C1	0.4566 (2)	0.2023 (1	$\begin{array}{c} 0.1628(3) \\ 0.3229(4) \end{array}$	0.0627 (4)	CI3-CI8		1.545 (2)	1.	532 (2) 538 (2)
C2 C3	0.3327 (2)	0.1630 (2	(4) (4) (2) 0.4825 (3)	0.0640 (3)	C15-C16		1.544 (2)	1.	552 (2)
C4	0.3747 (1)	0.0923 (1	1) 0.4911 (3)	0.0526 (3)	C16-C17		1.556 (2)	1.	554 (2)
C5	0.2995 (1)	0.0770 (1	l) 0.3413 (3)	0.0514 (3)	C17-C20		1.473 (2)	1.	461 (2)
C6 C7	0.1937(1) 0.1946(1)	0.0463 (1	$\begin{array}{ccc} 1 \\ 0.4195 \\ (3) \\ 0.5269 \\ (3) \end{array}$	0.0550(3) 0.0467(2)	C17-01		1.185 (3)	1.	429 (2)
C7 C8	0.2393 (1)	0.2337 (1	0.3207(3)	0.0390 (2)	C3—N2		1.305 (3)	1.	306 (2)
C9	0.3465 (1)	0.2630 (1	1) 0.3377 (3)	0.0387 (2)	C4—N1		1.302 (2)	1.	294 (2)
C10	0.3461 (1)	0.1760 (1	$\begin{array}{c} 1) & 0.2203 (3) \\ 0.2370 (3) \end{array}$	0.0470 (3)	N2-02 N1-02		1.378 (3)	1.	386 (2) 392 (2)
C12	0.3974(1) 0.4018(1)	0.3009 (1	1) 0.2370(3) 1) 0.3558(3)	0.0483(3)	111-02		1.570 (5)		5/2(2)
C12	0.2953 (1)	0.4246 (1	1) 0.4258 (1)	0.0381 (2)	C1C2C	23	108.9 (2)	10	9.3 (1)
C14	0.2505 (1)	0.3227 (1	1) 0.5331 (2)	0.0389 (2)	C2C3(24	123.5 (2)	12	23.7 (1)
C15	0.1556(1)	0.3127 (1	$\begin{array}{c} 1) & 0.6308(3) \\ 0.6647(3) \end{array}$	0.0530(3)	C_{3} C_{4} C_{5} C_{4}	25	124.9 (2)	14	(3.3(1))
C16 C17	0.1810(1) 0.2894(1)	0.4245 (1	1) 0.6647(3) 1) 0.5800(2)	0.0430 (2)	C5-C10-	-C1	107.8 (1)	10)7.0 (1)
C18	0.2274 (1)	0.4198 (1) 0.2609 (3)	0.0526 (3)	C10-C1-	-C2	114.6 (1)	11	4.3 (1)
C19	0.2845 (2)	0.1547 (2	2) 0.0408 (3)	0.0665 (4)	C5-C6-C	27	111.6 (1)	10	9.2(1)
C20	0.3686 (1)	0.5195 ($\begin{array}{ccc} 1) & 0.7230(3) \\ 0.8425(3) \end{array}$	0.0470 (3)	C6C/C	28 70	112.6(1)	11	2.9(1)
N1	0.3543 (2)	0.0453 ($\begin{array}{c} 0.6423(3) \\ 1) \\ 0.6509(3) \end{array}$	0.0655 (3)	C8-C9-(C10	112.8 (1)	11	3.1 (1)
N2	0.5267 (2)	0.1586 (2	2) 0.6349 (3)	0.0825 (4)	C9-C10-	-C5	108.2 (1)	10)7.6(1)
01	0.3009 (1)	0.5876 (1) 0.5028 (2)	0.0563 (2)	C10-C5-	-C6	113.5 (1)	1	3.4 (1)
02	0.4482 (1)	0.0851 (2	2) 0./418(3)	0.0805 (3)	C8C9C9C	-C12	112.0(1)	1.	2.5(1)
5α -Epimer	r				C11-C12-		110.6 (1)	1	1.1 (1)
C1	0.3799 (2)	0.4357 (1) -0.0675 (1)	0.0498 (3)	C12C13-	C14	109.0 (1)	10	9.0 (1)
C2	0.3493 (2)	0.4951 ($\begin{array}{c} 1) & -0.1781(1) \\ 0.2822(1) \end{array}$	0.0601 (3)	C13-C14	C8	113.0(1)	1	(3.7 (1) (7 2 (1)
C3	0.3094 (2)	0.4307 (-0.2820(1) 1) $-0.2760(1)$	0.0535 (3)	C14	-C9 C15	107.8(1)	10)4.0(1)
C5	0.4041 (1)	0.2696 (-0.1642(1)	0.0405 (2)	C14-C15-	-C16	104.7 (1)	10	03.3 (1)
C6	0.3781 (1)	0.1572 (1) -0.1704 (1)	0.0486 (3)	C15-C16	C17	106.3 (1)	10	07.3 (1)
C7	0.4079 (2)	0.1083 (1) $-0.0547(1)$	0.0509 (3)	C16-C17	C13 C14	102.4 (1)	10)2.3 (1) 99 9 (1)
0	0.5507(1)	0.1390 (1) 0.0469(1)	0.0403 (2)	CI1-CI3	017	JJJJJJJJJJJJJ		

C3-C4-N1	108.4 (2)	109.3 (2)
C4-N1-O2	105.6 (2)	105.7 (1)
N1-02-N2	111.2 (1)	110.4 (1)
O2-N2-C3	104.6 (2)	105.4 (2)
N2-C3-C4	123.5 (2)	109.2 (2)
C2-C3-N2	126.2 (2)	127.0(2)
N1-C4-C5	126 7 (2)	127.6(2)
C4C5C6	112.1 (1)	1150(1)
C1-C10-C9	112.0 (1)	109.8 (1)
C19C10C1	106.6 (2)	109.7(1)
C19C10C5	109.6(1)	1109(1)
C19-C10-C9	112.5 (1)	111.6(1)
C7C8C14	110.8 (1)	111 1 (1)
	113.1 (1)	114.0(1)
C_{12} C_{13} C_{17}	116.8 (1)	116.1 (1)
C12 - C13 - C17	100.8 (1)	110.1(1)
C18 - C13 - C12	109.0(1)	110.5 (1)
	112.8 (2)	112.7 (1)
	108.5 (1)	108.3 (1)
	118.9(1)	119.2 (1)
C13 - C17 - C20	110.8 (1)	111.5 (1)
C16-C17-C20	109.9 (1)	111.2 (2)
C17—C20—C21	177.7 (2)	175.2 (2)
01—C17—C13	111.2 (1)	114.5 (1)
OI-C17-C16	112.8 (1)	108.5 (1)
O1—C17—C20	109.5 (1)	108.7 (1)
C1-C2-C3-C4	-11.6(1)	12.2 (2)
C2-C3-C4-C5	2.0 (2)	-5.6(2)
$C_{4}C_{5}C_{10}$	-22.8(1)	27.2(2)
C4-C5-C10-C1	50.8 (1)	-539(1)
$C_{1} = C_{1} = C_{2}$	-661(1)	66 1 (2)
$C_{10} - C_{1} - C_{2} - C_{3}$	44.0(1)	-430(2)
C5-C6-C7-C8	529(1)	54.6 (2)
C6-C7-C8-C9		-516(2)
C_{7}^{-} C_{8}^{-} C_{9}^{-} C_{10}^{-}	56.0 (1)	51.6 (2)
	55.2 (1)	52 5 (1)
C_{0}		- 53.5 (1) 58 5 (1)
C_{10} C_{5} C_{6} C_{7}	-54.0(1)	-59.5(1)
$C_{10} = C_{10} = C$	-34.2(1)	- 39.3 (1) 57.2 (1)
$C_0 = C_1 = C_1^2$	54.5 (1)	-55.2 (1)
C_{11} C_{12} C_{13} C_{14}	-54.5(1)	- 53.3 (1) 53.9 (1)
C12 C12 C14 C14	50.5 (I) 60.7 (I)	597(1)
C_{12} C_{13} C_{14} C_{8} C_{9}	-00.7(1)	- 36.7 (1)
$C_{1} = C_{1} = C_{1$	53.0(1)	J7.7 (2)
	-33.8(1)	-5/.2(1)
	- 29.4 (1)	- 34.1 (2)
	1.5(1)	0.7(2)
	20.0(1)	22.2 (2)
	-43.0(1)	-42.3(1)
CI7—CI3—CI4—C15	45.6(1)	47.9 (1)

Table 3. Asymmetry parameters (°) for the 5 β and 5 α epimers

	5β	5α		5β	5α
Ring A					
$\Delta C_{s}(1)$	28.8	30.2	$\Delta C_2(1,2)$	52.2	51.0
$\Delta C_s(2)$	44.8	42.0	$\Delta C_2(2,3)$	43.0	38.1
$\Delta C_{s}(3)$	16.3	12.1	$\Delta C_2(3,4)$	9.2	13.1
Ring B					
$\Delta C_{\bullet}(9)$	1.0	5.0	$\Delta C_2(6,7)$	1.1	7.4
$\Delta C_{c}(10)$	1.2	5.7	$\Delta C_{2}(5,10)$	2.4	4.8
$\Delta C_{s}(8)$	2.0	0.9	$\Delta C_2(5,6)$	1.7	3.0
Ring C					
$\Delta C_{\star}(12)$	5.0	2.0	$\Delta C_{2}(11,12)$	5.2	2.6
$\Delta C_{s}(11)$	1.9	2.3	$\Delta C_{2}(11,9)$	1.7	4.4
$\Delta C_{s}(9)$	3.5	3.8	$\Delta C_2(9,8)$	5.7	3.0
Ring D					
ΔC_{13}	2.5	9.4	$\Delta C_2(16)$	20.5	12.3
$\Delta C_{\star}(14)$	32.0	26.9			

SHELX76 (Sheldrick, 1976) was used for structure refinement. Torsion angles were calculated using the XANADU program (Roberts & Sheldrick, 1975) and molecular diagrams were produced using SNPI (Karaulov, 1993).

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Dr D. Maes acknowledges support by the National Fund for Scientific Research (NFWO), Belgium. The authors also acknowledge receipt of NATO grant N-900270.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HR1007). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Calleri, M., Chiari, G., Chiesi Villa, A., Gaetani, M. A., Guastini, C. & Viterbo, D. (1975). *Acta Cryst.* B31, 2384–2389.
- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure. New York: Plenum.
- El Shora, A., Palmer, R. A., Singh, H. & Paul, D. (1984). J. Crystallogr. Spectrosc. Res. 14, 315-332.
- Gavezotti, A. (1982). Nouv. J. Chim. 6, 443-444.
- Gavezotti, A. (1983). J. Am. Chem. Soc. 105, 5220-5225.
- Karaulov, S. (1993). SNPI. Molecular Plotting Program. Univ. of Wales, Cardiff, Wales.
- Maes, D., Wyns, L., Lisgarten, J., Lisgarten. D. R. & Palmer, R. A. (1992). Acta Cryst. C48, 1092–1095.
- Roberts, P. & Sheldrick, G. M. (1975). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
- Sagebarth, E. & Cox, A. P. (1965). J. Chem. Phys. 43, 166-173.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Singh, H., Yadav, M. & Jindal, D. P. (1987). Indian J. Chem. B26, 95-99.
- Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444-3446.
- Yadav, M. R., Jindal, D. P. & Singh, H. (1988). Indian J. Chem. B27, 205-208.

Acta Cryst. (1995). C51, 670-673

Ein anorganischer Spirocyclus aus Cyclotriphosphazen und Phosphor(V)-Hydrazin-Heterocyclus mit Twist-Konformation

Ursula Diefenbach, Brigitte Stromburg und Udo Engelhardt

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34–36, D-14195 Berlin, Deutschland

(Eingegangen am 30. September 1993; angenommen am 2. Februar 1994)

Abstract

4,4,6,6-Tetrachloro-1',2',4',5'-tetramethyl-6'-phenoxy-6'-thioxocyclotriphosphazene-2-spiro-3'-cyclodi[λ^5 phosphadiazane], C₁₀H₁₇Cl₄N₇OP₄S, was synthesized in